Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Front Genet ; 13: 952219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313452

RESUMO

Leprosy is a chronic disease and also a global health issue, with a high number of new cases per year. Toll-like receptors can respond to mycobacterial molecules in the early stage of infection. As important components of the innate immune response, alterations in genes coding for these receptors may contribute to susceptibility/protection against diseases. In this context, we used a case-control study model (183 leprosy cases vs. 185 controls) to investigate whether leprosy patients and the control group, in southern Brazil, have different frequencies in TLR1 (TLR1 G>T; rs5743618), TLR2 (TLR2 T>C, rs1816702 and rs4696483), and TLR4 (TLR4 A>G, rs1927911) polymorphisms. Analysis of the TLR1 1805G>T polymorphism presented the G/G genotype more frequently in the control group. TLR2 T>C rs1816702 and TLR2 T>C rs4696483, the T/T and C/T genotype, respectively, were more frequent in the control group than in leprosy patients, suggesting protection from leprosy when the T allele is present (rs4696483). Haplotype analyses between TLR1 (rs5743618) and TLR2 (rs1816702 and rs4696483) polymorphisms suggest risk for the presence of the TCC haplotype and protection in the presence of the TCT haplotype. This study suggests that polymorphisms in TLR1 and TLR2 are factors that may contribute to development/resistance of leprosy.

2.
Genet Mol Biol ; 44(1 Suppl 1): e20200452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35421211

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), is the largest pandemic in modern history with very high infection rates and considerable mortality. The disease, which emerged in China's Wuhan province, had its first reported case on December 29, 2019, and spread rapidly worldwide. On March 11, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic and global health emergency. Since the outbreak, efforts to develop COVID-19 vaccines, engineer new drugs, and evaluate existing ones for drug repurposing have been intensively undertaken to find ways to control this pandemic. COVID-19 therapeutic strategies aim to impair molecular pathways involved in the virus entrance and replication or interfere in the patients' overreaction and immunopathology. Moreover, nanotechnology could be an approach to boost the activity of new drugs. Several COVID-19 vaccine candidates have received emergency-use or full authorization in one or more countries, and others are being developed and tested. This review assesses the different strategies currently proposed to control COVID-19 and the issues or limitations imposed on some approaches by the human and viral genetic variability.

3.
Clinics (Sao Paulo) ; 75: e1840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33146354

RESUMO

OBJECTIVES: HLA-B27 is strongly associated with ankylosing spondylitis (AS) and its presence helps to confirm AS diagnosis. Due to the high HLA polymorphism and the differentiated contribution of alleles and molecules encoded by them, HLA-B*27 allele identification is relevant in the clinical follow-up, diagnosis, and treatment of this spondyloarthropathy. Inexpensive genotyping techniques with high specificity and sensitivity are of great interest in histocompatibility laboratories. This work aimed to optimize HLA-B*27 genotyping by Polymerase Chain Reaction Sequence-specific Primer (PCR-SSP), which is an accessible and inexpensive technique. METHODS: The PCR-SSP was standardized using 26 HLA-B*27 positive and 3 HLA-B*27 negative samples previously defined by Polymerase Chain Reaction Sequence-specific Oligonucleotide Probes (PCR-SSOP) (medium resolution, One Lambda®) and primers described by Duangchanchot et al. (2009). For validating the technique, 397 samples were genotyped using PCR-SSP as well as PCR-SSOP. RESULTS: The PCR-SSP technique was standardized for identifying the alleles HLA-B*27:02, HLA-B*27:CAFRW (05/13/16/17/28/37/38/39/42), HLA-B*27:CAFRZ (08/26/40), HLA-B*27:09 and HLA-B*27:12, which were found in 90 positive samples (22.67%). There was 100% agreement between the two techniques for heterozygous samples; however, two homozygous samples could not be detected by PCR-SSP. CONCLUSION: The HLA-B*27 genotyping using PCR-SSP, an easy-to-use, specific, and affordable technique, was optimized for heterozygous samples. This technique may contribute to AS diagnosis.


Assuntos
Técnicas de Genotipagem , Antígenos HLA-B , Alelos , Genótipo , Antígenos HLA-B/genética , Teste de Histocompatibilidade , Humanos , Reação em Cadeia da Polimerase
4.
Clinics ; 75: e1840, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1133380

RESUMO

OBJECTIVES: HLA-B27 is strongly associated with ankylosing spondylitis (AS) and its presence helps to confirm AS diagnosis. Due to the high HLA polymorphism and the differentiated contribution of alleles and molecules encoded by them, HLA-B*27 allele identification is relevant in the clinical follow-up, diagnosis, and treatment of this spondyloarthropathy. Inexpensive genotyping techniques with high specificity and sensitivity are of great interest in histocompatibility laboratories. This work aimed to optimize HLA-B*27 genotyping by Polymerase Chain Reaction Sequence-specific Primer (PCR-SSP), which is an accessible and inexpensive technique. METHODS: The PCR-SSP was standardized using 26 HLA-B*27 positive and 3 HLA-B*27 negative samples previously defined by Polymerase Chain Reaction Sequence-specific Oligonucleotide Probes (PCR-SSOP) (medium resolution, One Lambda®) and primers described by Duangchanchot et al. (2009). For validating the technique, 397 samples were genotyped using PCR-SSP as well as PCR-SSOP. RESULTS: The PCR-SSP technique was standardized for identifying the alleles HLA-B*27:02, HLA-B*27:CAFRW (05/13/16/17/28/37/38/39/42), HLA-B*27:CAFRZ (08/26/40), HLA-B*27:09 and HLA-B*27:12, which were found in 90 positive samples (22.67%). There was 100% agreement between the two techniques for heterozygous samples; however, two homozygous samples could not be detected by PCR-SSP. CONCLUSION: The HLA-B*27 genotyping using PCR-SSP, an easy-to-use, specific, and affordable technique, was optimized for heterozygous samples. This technique may contribute to AS diagnosis.


Assuntos
Humanos , Antígenos HLA-B/genética , Técnicas de Genotipagem , Teste de Histocompatibilidade , Reação em Cadeia da Polimerase , Alelos , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA